TUTORIAL NOTES FOR MATH4220

JUNHAO ZHANG

1. THE MEAN VALUE THEOREMS AND THE MAXIMUM PRINCIPLES
Recall the mean value theorems and the maximum principles.

Theorem 1 (Mean value theorems). Let u € C%(Q) satisfy Au=0 (>0, <0) in
Q. Then we have

u(w) = (£,2)—

/ u(y)dSy, VBr(z) CCQ,
OB, (z)

or

u(z) = (<,) /B iy, B @) e

where w, denotes the surface area of the unit sphere in R™.

W, ™

Theorem 2 (Strong maximum principle). Let u € C?(Q)NC(Q) with Au > 0 (< 0)
in Q, and suppose there exists a point y € Q for which u(y) = supu (ir(lzf u). Then u
Q

is constant. Consequently a harmonic function cannot assume an interior maximum
or mintmum value unless it is constant.

Theorem 3 (Weak maximum principle). Let u € C?(Q)NC(Q) with Au >0 (< 0)
in Q. Then, provided ) is bounded,

supu = supu (inf u = inf u).
Q Q oQ

Consequently, for harmomnic u

infu <wu(zx) <supu, VzeQ.
oQ 90

Let us show some results given by the mean value theorems and the maximum
principles.

Example 4 (Bernstein). Suppose u is harmonic in By. Then there holds

sup| Du| < csup Jul,
By 1

2
where ¢ = ¢(n) is a positive constant. In particular for any « € [0, 1] there holds

lu(z) —u(y)| < clz —y|*sup |ul, Vz,y € By,
9B 2
where ¢ = ¢(n, @) is a positive constant.
Proof. Direct computation shows that
A(|Duf) =2 ) " (Diju)* +2)  DjuD;(Au) =2 Y (Dju)?,

i,j=1 i=1 ij=1
1
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moreover,
A(p|Dul?) = (Ap)|Dul’* +4 Y~ DipDjuDiu+2p Y (Diju)®, Ve € Cj(By).
i,j=1 1,5=1

By taking ¢ = n? for some n € C}(B;) withn =1 in By, we obtain by the Hélder’s
inequality,

n n
A(?|Dul?) = 2nAn|Dul® + 2| Dn[*| Dul® + 8y > DinDjuDsju+ 21> Y (Diju)?
i,5=1 1,5=1
> (2nAn — 6| Dn|*)|Dul* > ~C|Duf?,
where C' is a positive constant depending only on 7. Moreover, since
A(u?) = 2|Dul? + 2uAu = 2|Dul?,
by choosing « large enough we get
A(n?|Dul* + au?) > 0,

then by the maximum principle, we have

sup(°| Duf® + au?) < sup(n?|Dul® + au?),

B 9B
which implies

sup |Du| < esup |ul,
B

1 1
2

where ¢ = ¢(n) is a positive constant. Therefore we have

lu(z) —u(y)| < clz —y[sup|ul, Vz,y€ Bi.
9B,
O

Example 5 (Harnack inequality). Suppose u is a non-negative harmonic function
in B 1 Then there holds

sup |Dlogu| < C,
B

where C' = C(n) is a positive constant. In particular, there holds
U(I) SCU(y), Vm»yEB%’
where C' = C(n) is a positive constant.

Proof. Tt suffices to consider w > 0 in B;. Set v = logu. Then direct computation
shows

Av = —|Dv|?,
and set w = |Dv|?, we get

Aw + 2§:Dﬂ)Diw =2 En: (Dijv)2»

i=1 i,j=1
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moreover, take ¢ € C}(B;) with % bounded in Bj, by Hélder’s inequality,

Apw) + 2 Z D;vD;(pw)
i=1

=2p Z (Dijv)? +4 Z D;pDj;vD;;v + QwZDigoDiv + (Ap)w

i,j=1 i,j=1 i=1
A Dijv)? = 2|Dy||Dv]* — | |A CM D
> ¢ Y (Dyv)* = 2|De|| Dol |Ap| + " |Dv.
i,j=1
Choose ¢ = n* for some 1 € C¢(B;). Hence for such fixed n we obtain
A(ntw) + 2ZDiUDi(n4w)
i=1

1
5774IDUI4 — Cn’|Dn||Do|* — 49 (nAn + C|Dn|?)|Dv|?

Y

Y

1
—n*[Dv[* = Cn*| Dol — C?| Dol?,

where C' is a positive constant depending only on n and 7. Hence we get by Holder’s
inequality
- 1
A(ntw) + 2 Z DyvD;(n*w) > —n*w? - C,
i=1 K
where C' is a positive constant depending only on n and 7.
Suppose ntw attains its maximum at xg € By. Then D(n*w) = 0 and A(nw) <
0 at xg. Hence there holds
n*w?(zy) < C.
If w(xg) > 1, then n*w(xg) < C. Otherwise ntw(zg) < n*(xp). In both cases we
conclude
n*w(z) <C, Vz € B.

For any x,y € B%, by simple integration we obtain

1
log @ <|z-— y|/ |Dlogu(te + (1 —t)y)|dt < Clz —y|,
u(y) 0

therefore
u(z) < Culy).
O
Example 6 (Holder continuity). Suppose wu is a harmonic function in By with

u = on OB. If p € C*(0B;) for some a € (0,1), then u € C'%(B;). Moreover,
there holds

”“”c%(él) < CllellcaBy)s
where C' = C(n, o) is a positive constant.
Proof. First the maximum principle implies that

inf ¢ <wu(z) <supyp, V€ Bj.
0B 9B
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moreover, we claim that

lp(z) — p(x0)] Vo € OB,.

)

sup W(Lu(io” S 2% sup
veB; | — |2 c€aB, T — Tol®

Indeed, without loss of generality, we assume By = Bi((1,0,---,0)), 2o = 0 and
©(0) = 0. Define K = sup %. Since |z|*> = 2z for z € dB;. Therefore for
x € 0B7 there holds e

plx) < Klo|* <23 Ka},
define v(z) = Z%leg in B;. Then we have
S

o (6%
Av(z) =2 K~§(—

5 )x§_2<0, Va € By,

therefore
u(r) <v(r) =28 Ka? <2%K|z|2, Vze By,
considering —u similarly, we get
lu(z)| < 22 K|z|%,Vz € By.

The result follows from the above estimates. Indeed, for any z,y € B, set
dy = dist(x,0B,) and d, = dist(y,dBy). Suppose dy, < d,. Take zo,yo € 0B such
that |z — zo| = d, and |y — yo| = d,.

If |v —y| < %. Theny € B%z (x) C Bg,(z) C B;. Therefore

2 |u(z) — u(y a
a3 POl < Clu = sl o, o < € Ilcmiom.

2
Hence we obtain

lu(z) — u(y)| < Clo —yl? ¢llca@n)-
If dy < d; <2z —y|. Then
[u(z) — u(y)| < u(x) — u(zo)| + |u(zo) — ulyo)| + |u(yo) — u(y)|
< C(dZ + |zo —yo|2 +d3)|l¢l
< Clz —yl? |¢llcaan,)-

C>(8By)

A Supplementary Problem
In a bounded region 2 C R”, if u satisfies
Au=f in Q,
u=g on Jf).
show that
lu(z)] < sup |g(z)| + Csup [f(z)], VzeQ,
T€IN zEQ

where C' = C(2) is a positive constant.
For more materials, please refer to [1, 2, 3, 4].
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